Riveted Subpanel

This weekend I spent a few hours working on finishing up the canopy frame and sub panel riveting. I focused on riveting the subpanel completely to the fuselage to make sure that when I do final fittings of the canopy frame, everything is rock solid.

Here’s the left side attach of the sub panel to the fuselage. There are six more revets below this also attaching the sub panel to the fuse.

Here’s the forward part of the subpanel attached to the supporting rib. This is mirrored on the right side.

Here is the backside of the subpanel. Opposite of the first image. You can see some of the lower rivets near the fuel vent line on the bottom part of the image.

The sensor manifold on the firewall is now permanently attached as it is bolted to the supporting rib on the other side of the firewall. Now that it’s riveted in place this can remain attached.

Riveted Subpanel

Canopy Bracing & Panel Lighting

Tonight I spent a few hours finishing the canopy bracing.

Here are the rivets on the underside of the canopy skin. The bottom are pulled rivets and the top ones are solid rivets.

The center brace.

Here’s the right side brace. One rivet will need to be redone as the bucking bar slipped.

The entire frame will get painted with my interior paint, a dark gunmetal gray.

I wrapped up the night by testing out my panel lights.

I’m using a high density led strip that has a silicone diffuser. They are very bright, but will be wired to a dimmer switch on the panel for fine adjustment. I may switch to a more blue light for better night vision. I’ll be adding these strips to other parts of the interior to aid in visibility during night operations, the baggage area in particular.

Canopy Bracing & Panel Lighting

Canopy Frame & Engine Controls

This weekend I spent almost 20 hours working on the plane.

I started by rigging the mixture, throttle, and prop cables to the engine.

Here’s the mixture bell crank. The mixture cable is attached to the right side. I got it all adjusted so that the knob reaches the stops as the servo side hits the mixture stops.

I then spent a couple hours test fitting and adjusting the prop cable. Similarly, I needed to adjust it several times so that the stops were reached without any issues.

Here is a top down view looking at the cable attached to the prop arm. The bolt will need to be adjusted, it fully clears the mechanism, but it’s still too close for comfort. I’ll add another washer under the bolt head to increase the clearance.

The throttle cable was a lot easier, the alignment was almost spot on. I’ll need to do some slight adjustments on the servo arm.

Final adjustments to all this will be after the first engine start. But for now, everything is set from the factory.

Here’s the panel test fit and the cable bracket clamped to the panel temporary.

I then spent about 5 hours riveting the canopy frame and skin together.

Here’s the top of the canopy skin. The missing rivets are for the frame bracing. I will rivet the sub panel and lock-in the forward section of the fuselage before final riveting the braces, just to make sure it’s all perfectly aligned.

Here’s the bracing from the inside, the bottom rivets are riveted, but the top ones will be later.

Here’s the panel installed so that I can test fit the frame. I might need to make a slight adjustment where the G5 is installed on the far left. It might slightly interfere with the craniotomy frame tube that runs the length from left to right along the top of the panel.

Canopy Frame & Engine Controls

Garmin G5 Pitot/Static Tubes

Today I spent a few hours working on getting the pitot and static lines up to the panel for the Garmin G5. The G5 will act as a backup EFIS to the Dynon.

I had to route the static line from the aft static ports to the front of the plane.

The tube here runs parallel to the rudder cable along the side of the fuselage.

It’s secured with a zip tie and this will be behind a panel that also covers the flap actuator tube.

I had to drill two holes through the bulkheads. This is blind riveted and I didn’t want to drill it off. The alignment took some trial and error.

Here is the routing just next to the pilots seat, this will be behind the side panel.

The final two holes put through the center channel bulkheads. From here, the static tube is routed up and to the panel and to the G5. Also on the panel will be a toggle switch an alternate static source in case of a static port failure.

Garmin G5 Pitot/Static Tubes

Panel work

Yesterday I spent a few hours working on the panel. I received an order of some 6-32 nut plates for mounting the sub modules onto the panel.

I started by doublechecking the measurements for the through-holes, and then drilled the panel. I didn’t get individual photos, but here is the back once the nut plates were riveted on.

After double checking the alignment of everything individually I test fit all the components.

I then decided to mount the primary display tray to the back of the panel.

The panel then screws into this from the front of the panel. This will allow for some additional components to be mounted easily behind the panel.

I checked the fit by temporarily installing the panel in the plane. Plenty of room all around.

Starting to look almost like a real plane!

Next I’ll begin marking and drilling the switches and some additional components including the Hobbs meter, ELT tester, the Dynon Ident button and dimmer knobs.

Panel work

Engine Controls Bracket

Yesterday I spent a few hours making the engine controls bracket. The bracket that comes in the kit is flimsy 0.032 aluminum sheet that is bent so it can attach to the bottom of the panel. I knew I wanted to use something different than the stock bracket, so I made one.

Here you can see the completed bracket. It’s made from 1/4” aluminum angle. It’s very hefty. The three holes are for the throttle, prop and mixture control. The two larger holes have relief cuts made on the back of the angle to allow for the nuts to hold the controls onto the bracket.

I then lined the bracket up with the control panel, and drilled matching mounting holes. I then added some nut plates to the panel so that this can easily be mounted flush to the bottom of the panel. Now it just needs some priming and painting and the bracket is done.

Engine Controls Bracket

VPX Wiring #2

Today I continued with my wiring extravaganza. I didn’t get any new pictures, but I started by beeping out the ELT DIN connector. I originally made the harness a few years ago, and forgot to write down the wire designations. I tested the connector and verified with the specs provided with the ELT and then made the DSub15 connector for the serial bus. The ELT just has serial Rx, power and ground.

Here’s the DIN connector that plugs into the ELT. The tail sticking out is to test the Rx signal. It will eventually be tucked away.

VPX J10 & J12

Here are two of the main power connectors from the VPX. I connected these and began to separate out the bundles by where the wires needed to route.

VPX J1, J2, J8

On the other side of the VPX are the two D25 connectors J1 and J2. These are for some lower power items, like flap position sensor and interior lights, as well as the VPX serial connection. The J2 connector is for all the switches. These will go directly to the panel switches, which will be connected to ground on the other side.

Bundled by function and aircraft location

These bundles are such that each group will go to the same general area of the plane. The lighting harness for example is split into two half way down in order to go to the left and right, for each wingtip. Others are for powering the aft components such as the ADSB, transponder, and autopilot servos.

Switch bundle and serial bundle

This side contains the switch bundle, which heads off to the right side of the image from my hand, and the other bundles are for the flap position sensor, and the serial connection.

EMS and other wires

Here’s a wider shot showing the EMS in it’s mounting location. Once the plane is built this area will only be accessible by laying under the panel and accessing it from below.

The last thing I did was to drill the copilot’s control stick for the quick release pin.

This pin allows the copilots stick to be removed in case the passenger wants a more comfortable ride. There will be two wires coming out of here for the copilots PTT for the radio. It will be fitted with a connector in order to make the system removable.

VPX Wiring #2

Fuselage Wiring

Today I did a lot of wire organizing in the forward section of the fuselage, under the panel. All of the cables routed from the aft fuselage and under the seats funnels into the center section and routes on the floor up to the panel.

Once I organized the rats nest of wires I ended up with two nice bundles. These include the two trim motors, flap motor, ADSB, transponder, ELT, and ADHARS unit. These will be wired to the different serial and power connectors under the panel.

On the right side of the fuse I’ve separated out the radio antenna wire so that I reduce interference as much as possible. This will be behind there side panel from my interior, so it won’t be seen. The RG400 coax wire has a minimum bend radius of 1in, which I am well above in all these bends.

On the left side of the fuse I’ve bundled my two autopilot harnesses. These are separated out from the power wires and autopilot disconnect which will route directly to the pilots stick. The Dynon autopilot harnesses are the standard SkyView Net 9 conductor harnesses except for power. So the only wires needed are the paired data wires.

Here are the Dsub15 connectors for the GPS, ADSB, and Transponder. The red wire for the ADSB and Transponder are left off the connector in order to connect to the VPX. The GPS is powered by the SkyView screens, so it’s fully pinned into the connector.

There are 5 components that use serial connections. In order to connect all the serial to both the PFD and MFD screens, I made a serial bus board that has 7 connections. These are all hooked up in parallel on each pin. When I connect all the connections to the board, each screen will be hooked up to each component properly. I’ve done the pins so that each Rx and Tx from the screens are assigned properly.

Fuselage Wiring

Fuselage gussets

Today I spent a couple hours putting the forward fuselage gussets in place. They are unique to the -7 vs the -7A. The tri-gear plane rear landing gear are mounted just forward of the center section. Since the -7 is a tail trager, there is a gap here that need to be reinforced using these gussets. They are attached to the sides of the fuselage with 5 bolts that need to be match drilled. The gussets also line up with the bottom wing attach bolts.

I lined everything up and then drilled the holes to #40 and then enlarged for the AN3 bolts. I prepped and primed these and then attached them to the fuselage. The whole interior will be painted with my interior paint, but it’s good to prime all the parts especially mating surfaces.

I also sent a bit of time working on the panel attachment brackets. Since I’m using twin Skyview HDC screens, I need to move the Vans panel supports inboard. This requires making some custom brackets to attach the panel to the sub panel. I received a shipment of L stock from vans that worked perfectly for this.

I decided to wrap up the center section bolts that are used for the tricycle gear. In the tail dragged version the bolts need to be put into the center section.

The bottom bolts were difficult to reach but everything is now in place and torqued.

I also placed the remaining two cover supports on the sides of the fuselage, forward of the center section.

Next up is to wrap up the exhaust hangar modification. And to drill the wing fuel attachment bracket to the sides of the fuselage.

Fuselage gussets

Plane Has a New Home

After three and a half years in the garage. I finally moved the plane to its new home in my hangar!

There was probably a lot more work I could have done before moving it, but there were some circumstances that dictated I needed to move to the airport.

It started by first getting a giant truck with a lift gate. Once I got that to the house I had my friend Mike over to help me out. We removed the canopy and rear window (which I just had sitting on the plane temporarily…need to finish this) and then rolled the plane out into the driveway.

I know it doesn’t look like much, but seeing the plane in the driveway is one of the coolest things.

After doing some measurements and planning over the last couple months, I realized that the wheels were too wide for the lift gate. Luckily Mike had a 4×8 sheet of plywood that we laid on top of the lift gate.

We rolled the plane forward and lined it up. If it wasn’t for the plywood, this would have been a very precarious balancing issue (Thanks Mike!).

We chocked the wheels once we made sure the engine wouldn’t hit the floor of the truck when lifting, and then raised the plane up and pushed it into the truck. My girlfriend Britney did an awesome job holding the whole airplane in the air!

Once the plane was in. we loaded up the rest of the few remaining items and secured everything down. It felt a little nerve wracking having all this in the back of a truck, but it all went off without a hitch.

I managed to drive the truck (slowly) down to the airport in San Martin and we basically did the reverse, and there were no issues. Luckily the rain held off the whole time we were moving.

We rolled the plane in and it felt like a huge accomplishment. I immediately wanted to start mounting the tail and wings and everything on the plane, but the wings will have to wait for another time.

I loosely fit the horizontal and vertical stabilizers using some clamps. This is probably the coolest thing ever (so far)!

All in all, it was a very successful and satisfying day. I couldn’t have done it without the help of Mike and Britney and of course my mom, who brought us all some lunch and helped with the moving of everything! (Garage can now be used for her car again)!

Plane Has a New Home